Abstract

This paper introduces a methodology to measure misreported trade in a consistent way across countries and over time. Our methodology does not require any assumptions about which countries may be more or less likely to misreport – rather, all indices are derived endogenously with available trade data. We derive seven specific indices related to overall misreporting, as well as over- and under-reporting of exports and imports. Applying this method to existing bilateral trade data on the HS 4-digit level from 1996-2015, we present several rankings and describe a few prominent cases, such as China. Overall, our indices can explain intuitive developments well and should help researchers to study countries’ trade misreporting in a global dimension that is comparable across countries and over time. We conclude the paper with an application, focusing on the role of tariff and VAT rates as predictors of import under-reporting. As predicted by economic theory, case studies, and economic intuition, we find positive correlations for both tariff and VAT rates with import under-reporting. These results are robust to the inclusion of potentially confounding factors, as well as country- and time-fixed effects.

JEL Classifications: F13, F14, H26
Keywords: international trade, trade misreporting, tariff rates, VAT rates
1 Introduction

In 1996, the US recorded a $39.5 billion trade deficit with China (Feenstra et al., 1999). However, China reported that value to be $10.5 billion. These official trade figures, reported by the world’s two largest economies, differ by $29 billion – a number equivalent to the collective GDP of Uruguay and Zimbabwe at that time. But which number is correct or, more realistically, to what degree are both incorrect? The literature has produced evidence suggesting (i) an under-reporting of Chinese exports to avoid the value-added tax (VAT), as well as (ii) tariff evasion at the US border through under-reporting of imports (for example, see Ferrantino et al., 2012). In fact, if the latter were true, this $29 billion gap may be even higher. This simple and prominent US-China example illustrates that discrepancies in reported trade statistics are not explainable by the development status of reporting countries alone. For example, similar gaps in reported trade numbers have been identified between Canada and the US, two of the richest OECD countries (Feenstra et al., 1999). Thus, it is not sufficient to simply assume the US numbers to be correct and the Chinese numbers to be inaccurate.

But why would such discrepancies in reported trade data matter? In reality, fabricated trade statistics can put policymakers in difficult situations, since trade data play a central role in macroeconomic policymaking, as well as in trade and foreign policy considerations. Examples include public policies related to protectionist tariff measures, trade negotiations, capital controls, or export support programs.\(^1\) Trade data might also substantially influence countries’ internal democratic decision making processes. For instance, the magnitude of the US trade deficit with China played a substantial role in the 2016 presidential elections (Schneider-Petsinger, 2017). Similarly, trade relationships with China played a crucial role in the UK voters’ decision in the Brexit referendum (Colantone and Stanig, 2018). Perhaps most importantly from a fiscal perspective, misreporting trade data can directly decrease public resources, for example

\(^1\)For example, Feenstra et al. (1999) describe how bilateral trade deficit acts as one of the principle drivers in the US trade disputes with East Asia; UNCTAD (2016) finds the extensive use of export under-reporting as a main tool of capital flight from four resource-rich developing countries (Côte d’Ivoire, Nigeria, South Africa, and Zambia). Kar and Spanjers (2015) claim there was around $1 trillion in illicit capital outflows from emerging countries in 2013, and over 83 percent of that number are suggested to be transported through trade misinvoicing. Finally, Jara and Escaith (2012) gives a detailed account of how important international trade statistics are for national and international economic policy making.
via lost revenue from tariff evasion or the misuse of export support programs. Further, any evidence-based policy making or empirical analysis using misreported trade data might indicate misleading outcomes of targeted policy interventions.\(^2\) Similarly, measuring international trade costs or the costs of trade (for example, the costs of cheap Chinese imports on employment) might be erroneously estimated if trade data are systematically misreported.\(^3\)

Overall, we can summarize this discussion with three key points: (i) trade data are important for policymaking, (ii) misreporting trade data exists and is unlikely exclusive of rich countries, and (as a consequence of the previous point) (iii) it is insufficient to use one country’s data as the automatic benchmark for correct reporting of any bilateral trade estimate. To date, several studies exist that analyze and quantify underlying incentives for misreporting. For example, Fisman and Wei (2004), Javorcik and Narciso (2008), Mishra et al. (2008), and Ferrantino et al. (2012) estimate the impact of tariffs on under-reporting imports; Ferrantino et al. (2012) investigate under-reporting of exports to avoid tax payments. However, these studies usually have to rely on the assumption that countries commonly labeled as developed report their bilateral trade data correctly, whereas developing countries do not. In addition, the vast majority of the associated studies focus on individual country pairs or a small group of selected trading partners to investigate trade misreporting, whereas a misreporting index that is comparable across countries and over time has remained elusive.

In the following pages, we aim to provide just that: To objectively derive a trade misreporting index that is (i) non-discriminatory (i.e., without an \textit{a priori} definition of one country’s reports as more credible than another’s), (ii) scale-independent (i.e., independent of country, economy, and population size), and (iii) comparable across countries and over years. We want to briefly sketch our methodology that constitutes the main contribution of this paper. First, we identify a country’s numerical reporting distance of each reported trade flow to its respective

\(^2\)Egger and Larch (2012) find that disregarding tariff evasion suggests unrealistically higher welfare effects of a full liberalization of import tariffs.

\(^3\)For example, The World Bank and the United Nations Economic and Social Commission for Asia and the Pacific (UNESCAP) jointly publish a global data set of bilateral trade costs (available at \url{https://data.worldbank.org/data-catalog/trade-costs-dataset}). To measure bilateral trade costs, they simply ignore the issue of misreporting, which might significantly alter the estimated trade costs. Autor et al. (2013) find that a cheap Chinese import surge resulted in higher unemployment and low wage rates in the US manufacturing sectors, which is estimated using the UN Comtrade database that disregards any possibility of misreporting.
counterpart’s reported value. Second, we aggregate that country’s reporting discrepancies with (i) all trading partners (ii) for all goods and services (iii) in a given year to derive a country- and year-specific weighting factor. Intuitively, that weighting factor proxies “how much we can believe that country’s trade numbers in that year, according to all their trade partners’ reports”. Third, these weighting factors allow us to calculate a weighted trade value for each individual trade entry. Thus, the resulting estimates of each individual bilateral trade flow are solely determined by available data and remain free from any a priori assumptions about who may or may not be reporting accurately. Fourth and final, we put the estimated trade flows in relation to the actual trade flows to derive a general trade misreporting index ranging from zero to one.\footnote{Specifically, we employ a variation of a Contest Success Function (CSF, e.g., see Buchanan et al., 1980) to measure
\[\text{Index} = \frac{\text{estimated}}{\text{estimated} + \text{actual}}, \text{ where } 0 \leq \text{Index} \leq 1.\]}

We then repeat these steps to derive six specific over- and under-reporting indices for exports and imports – each of which is designed to analyze particular types of misreporting.

Applying this methodology, we then access bilateral trade data for 160 World Trade Organization (WTO) member countries from 1996-2015, incorporating over 58 million pairs of trade observations at the HS 4-digit level. For 2015, we find Togo to be the largest overall trade misreporting country, followed by Antigua and Barbuda, Panama, and Afghanistan, whereas Canada emerges as the least misreporting country. In general, high-income OECD countries misreport the least, whereas low-income countries misreport relatively more over the entire sample period. However, and perhaps somewhat surprisingly, high-income non-OECD countries are the second highest export-misreporting country group, including Kuwait, Saudi Arabia, and the United Arab Emirates. These nations rely heavily on exporting oil and other natural resources, which could explain their large degree of misreporting as a tool of illicit cross-border capital movement. These findings are also commensurate with the regional average, placing the Middle East and North Africa as the top export misreporting region. Finally, North America remains the least misreporting region, both in terms of exports and imports, while Sub-Saharan Africa emerges as the largest import misreporting region.

As one particular case study of our indices, we then turn to the example of China, concluding the country’s average export misreporting index to be around 40 percent higher than that
of OECD countries. However, that is not consistent across all types of misreporting: China’s average import misreporting is comparable to the OECD average throughout the 1996-2015 period. Further, China’s imports are dominated by over-reporting, while our results suggest that exports are largely under-reported. Interestingly, however, these trends are reversed in recent years. Chinese overall trade misreporting started to decline significantly right before 2001 – the year when the country joined the WTO. Quite possibly, this could reflect the transparency and gradual liberalization requirements the country had to comply with for its accession into the multilateral trading system. In addition, our indices suggest that possible illicit capital flight outflows through import over-reporting and export under-reporting declined over the years, corresponding to China’s gradual relaxation of its capital outflow control regimes. However, possible inflows of ‘hot money’ through export over-reporting may have increased during this period.

To conclude the paper, we provide one empirical application of one of our derived indices to provide an example of a practical application. Specifically, we further explore import under-reporting – the type of trade misreporting that has received the most attention in the literature to date. Intuitively, as indicated by various country-specific studies, importers may intentionally under-report to evade tariffs (e.g., see Fisman and Wei, 2004, Mishra et al., 2008, Ferrantino et al., 2012). Indeed, we find evidence consistent with this hypothesis as applied tariff rates remain a positive and statistically powerful predictor of our import under-reporting index throughout a series of regressions, using panel data for our sample countries from 1996-2015. This result prevails even when we control for country- and year-fixed effects, in addition to potentially interfering variables such as trade openness, democracy, or corruption levels. Finally, we also find value-added tax (VAT) rates to be positively associated with import under-reporting. In addition to the intrinsic implications of these results, we hope this application provides an example for the usefulness of our indices in analyzing a range of research questions related to misreported trade data in a panel dimension across many countries and years.

Overall, we aim to contribute to the research community in two ways. First, to the best of our knowledge, we present the first method to measure country- and time-specific misre-
porting of trade data which is free from *a priori* ad-hoc assumptions about who does and does not report correctly. In practice, this method could be applied to any level of disaggregated trade data. Second, we provide a ready-to-use set of trade misreporting indices, which are comparable across countries and over time. Specifically, we derive seven distinct indices that explore *(i)* overall trade misreporting, *(ii)* export misreporting, *(iii)* import misreporting, *(iv)* export over-reporting, *(v)* export under-reporting, *(vi)* import over-reporting, and *(vii)* import under-reporting. Depending on the research questions, we hope that these indices can help us to better understand both the determinants and the consequences of various types of trade misreporting on a global level.

The paper proceeds with a short background discussion of existing types of trade misreporting measurements. Section 3 introduces our theoretical framework, whereas Section 4 takes the developed indices to the data and presents initial findings, including a case study on China. Section 5 presents one empirical application of one of our indices. Finally, Section 6 offers concluding remarks.

2 Background

In theory, international mirror trade data should be comparable, since each transaction is reported twice by the trading partners to the corresponding public authorities of their countries. However, similar to other publicly recorded economic activities where deviations from actual figures generate rents, discrepancies in reported trade data have become a historical phenomenon, and their existence widely recognized in the economics literature. These discrepancies in reported bilateral trade statistics, which Ferrantino et al. (2012) describe as “endemic globally”, continue to stifle economic research and policymaking. Exporting and importing parties may have several incentives for misreporting trade data. For example, tariffs or other protectionist trade policies can encourage importers to under-report; capital controls may lead

5For example, 19th century Italian economist Galileo Ferraris (1885) measured the movement of gold from France to Great Britain from 1876-1880 and 1881-1884, finding that only a varying part of the total exports and imports of any country was recorded in the official published statistics. Morgenstern et al. (1963) and Bhagwati (1964) provide an early account of trade misreporting.
to misreporting in order to channel capital into or out of the country; export support programs might inspire exporters to inflate export earnings.\footnote{See Bhagwati (1964, 1967, 1981) for details on different types of trade misreporting, their underlying motivations and economic implications, as well as possible ways of faking trade invoices in practice.}

While these motivations of misreporting trade are much better understood, measurement methods used to assess misreporting have received relatively little attention. The few existing studies concerned with measuring discrepancies in trade data can broadly be divided in two groups. Early works simply measure differences of reported mirror trade flows by bilateral trading partners as misreporting (for example, see Morgenstern et al., 1963, Bhagwati, 1964, Sheikh, 1974, among others), while Fisman and Wei (2004) and studies thereafter focus on the difference in logarithms of bilateral mirror trade flows (also see Javorcik and Narciso, 2008, 2017, Mishra et al., 2008, and Fisman and Wei, 2009). Initially, they calculate reporting discrepancies as \[\text{gap_value} = \log(\text{export_value}) - \log(\text{import_value}).\] However, because of its logarithmic definition, this specification ignores transactions where one partner recorded some trade but the corresponding partner recorded nothing. To take into consideration these extreme cases of so-called “complete smuggling”, Mishra et al. (2008) and Fisman and Wei (2009) use a second measure, where the reporting gap is measured as \[\text{evasion} = \log(1 + \text{imports}) - \log(1 + \text{exports}).\]

These methods merely capture the trade reporting gap. This gap can be attributed to misreporting by a specific country only when one assumes that the partner country’s reported trade data is correctly recorded. For example, Javorcik and Narciso (2008) consider Germany’s reported trade data as accurate when exploring the misreporting of its ten Eastern European trading partners. Similarly, estimating import under-reporting by India, Mishra et al. (2008) regard the trade data reported by its top 40 trading partners as correct. Following a similar assumption, Ferrantino et al. (2012) analyze US imports from China and explore the possibility of exports being under-reported at the Chinese border, while considering the US data as accurate. In turn, Ferrantino et al. (2012) propose the possibility of import under-reporting by the US only when the Chinese data are assumed fixed. In sum, all these studies have to make an ad-hoc assumption that one side of each trade relationship is correctly reported, whereas the other is not.
Perhaps as a consequence of this lack of a comparable and consistent trade misreporting index, the literature usually focuses on one trading partner (e.g., Fisman and Wei, 2004, and Ferrantino et al., 2012) or the few major trade partners of one country (e.g., see Mishra et al., 2008, or Javorcik and Narciso, 2008). A few studies consider a select group of countries, such as Javorcik and Narciso (2017) who analyze bilateral exports from Germany, the US, and France, as well as imports by 15 countries that joined the WTO between 1996 and 2008. Moreover, the prevailing literature rarely attempts to capture the extent of all four types of trade misreporting by a particular reporting country. For example, Fisman and Wei (2004), Javorcik and Narciso (2008); Mishra et al. (2008); Ferrantino et al. (2012), and Javorcik and Narciso (2017) try to capture and explain import under-reporting; Ferrantino et al. (2012) also explore export under-reporting (also see Arslan and van Wijnbergen, 1993). As one of the few exceptions, Buehn and Eichler (2011) aim to capture all types of trade misreporting, but employ aggregate trade data between the US and 86 countries. Again, Buehn and Eichler (2011) start from the premise that one country (in this case the US) reports trade data accurately.

Overall, we lack a consistent empirical method that is comparable across countries and over time to estimate trade misreporting without making ad-hoc a priori assumptions about who does and does not report correctly.

3 Theoretical Framework

The dual nature of reported trade data provides us with a straightforward way to identify the existence of misreporting. Nevertheless, assigning any discrepancies to one of the trading partners is challenging since differences may be induced by either or both parties involved. As an example, consider the export of coffee (HS 4-digit code 0901) from Brazil to Tunisia. Let us assume that, in a given year, Brazil reports exporting $100,000 worth of coffee to Tunisia; however, Tunisia reports only $60,000 worth of coffee imports from Brazil. Who is misreporting? We will use this example throughout this section to illustrate the derivation of our index. To

7Kellenberg and Levinson (2016) make an attempt to examine misreporting using a larger panel including trade data between 126 countries over 11 years. However, they use aggregate trade data which may not be able to capture the extent of trade misreporting correctly – an aspect we consider in our data section.
keep it simple, we assume that both values are in so-called free-on-board (FOB) values. To facilitate readability, we omit time subscripts t throughout this section as all calculations are of a static nature, i.e., take place in the same year.

3.1 Step 1: Deriving Weighted Trade Values

Our first step to derive a comparable index of trade misreporting consists in identifying the degree to which a given country misreports its exports and imports in a given year. Then, we use these numbers to calculate the weighted value for each bilateral trade transaction. Thus, we begin by considering the ‘reporting distance’ of all bilateral trade relationships reported by a country and all of its trading partners.

3.1.1 Export Weighting Factors

Beginning with exports, consider the top panel of Table 1, displaying the hypothetical relationships between exporting Brazil and importing Tunisia. We can observe three types of trade links: exports that are reported by Brazil but unreported (as imports) by Tunisia; exports reported by both countries, indicated by the shaded grey areas; and imports reported by Tunisia that are not reported as exports from Brazil. We can then extend this picture to all countries that Brazil is linked to in terms of exports. To keep things simple in this example, Table 1 assumes Brazil’s exports are linked to no more than three countries overall in a given year: Tunisia, Bangladesh, and Australia. (Note that this includes countries that report having imported something from Brazil but Brazil does not record any of those exports.)

Our first step consists in using the absolute reporting distance of Brazil’s reported export values with the respective importer-reported import values. We consider the unreported trade values as zero trade where one party reports non-zero trade, whereas the corresponding partner reports nothing. In the example of Table 1, Brazil’s reported exports total $1,060,000, whereas its partners report importing a total of $1,180,000 from Brazil in aggregate. However, the total

8Following the IMTS (2010) recommendation, countries use the FOB valuation for exports (at the border of the exporting county) and the cost, insurance, and freight (CIF-type) valuation for imports (at the border of the importing country) while reporting their trade values. We will return to this difference in our empirical section.
Table 1: Mirror trade flow reported by exporter Brazil (s_1) and all destination countries: Tunisia (d_1), Bangladesh (d_2), and Australia (d_3).

<table>
<thead>
<tr>
<th>HS-4 code</th>
<th>Source</th>
<th>Destination</th>
<th>Export value ($000)</th>
<th>Import value ($000)</th>
<th>Absolute Reporting distance ($000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0806</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>0901</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>100</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>4040</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>40</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>5050</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>50</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>6060</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7009</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>Brazil (s_1)</td>
<td>Tunisia (d_1)</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8(3)</td>
<td></td>
<td>6(3)</td>
<td>225(190)</td>
<td>190(150)</td>
<td>135</td>
</tr>
<tr>
<td>1010</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>85</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>3030</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>60</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>4040</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>5050</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>6060</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>7009</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>Brazil (s_1)</td>
<td>Bangladesh (d_2)</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>8(4)</td>
<td></td>
<td>7(4)</td>
<td>355(325)</td>
<td>510(370)</td>
<td>265</td>
</tr>
<tr>
<td>1010</td>
<td>Brazil (s_1)</td>
<td>Australia (d_3)</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Brazil (s_1)</td>
<td>Australia (d_3)</td>
<td>100</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>3030</td>
<td>Brazil (s_1)</td>
<td>Australia (d_3)</td>
<td>120</td>
<td>140</td>
<td>20</td>
</tr>
<tr>
<td>4040</td>
<td>Brazil (s_1)</td>
<td>Australia (d_3)</td>
<td>240</td>
<td>200</td>
<td>40</td>
</tr>
<tr>
<td>5050</td>
<td>Brazil (s_1)</td>
<td>Australia (d_3)</td>
<td>15</td>
<td>15</td>
<td>125</td>
</tr>
<tr>
<td>5(2)</td>
<td></td>
<td>3(2)</td>
<td>490(460)</td>
<td>480(465)</td>
<td>120</td>
</tr>
<tr>
<td>($s_1 = d_n, n = 3$)</td>
<td>21(10)</td>
<td>14(10)</td>
<td>16(10)</td>
<td>1,060(975)</td>
<td>1,180(985)</td>
</tr>
</tbody>
</table>

Notes: The above table shows hypothetical trade reportings between exporting Brazil and importing Tunisia in a given year. Both exports and imports are considered here in comparable FOB values to eliminate discrepancies resulted from FOB and CIF price reportings by the exporter and the importers, respectively.
absolute reporting distance of Brazil reports exports from its counterparts’ reported imports is $520,000. Thus, we derive the export weighting factor (EWF) for Brazil in this example as one minus the ratio of the total absolute reporting distance divided by the sum of Brazil’s reported exports and its partners’ reported imports. In this case, we derive a value of $1 - \frac{520,000}{1,060,000 + 1,180,000} = 0.755$. Intuitively, the closer the EWF comes to zero, the less misreporting we detect; as the EWF approaches one, more and more misreporting is detected.

From this example, we can now formalize the derivation of the EWF. Considering total reported exports x of all products K (with $k \in [1, \ldots, K]$) from all source countries S (with $s \in [1, \ldots, S]$) to all destination countries D (with $d \in [1, \ldots, D]$), we can write

$$X^K_{sD} = \sum_{k=1}^{K} \sum_{d=1}^{D} x^k_{sd}.$$ \hfill (1)

In our simple example from Table 1, this corresponds to the reported exports of $1,060,000$. Further, the total reported imports (m) of all K products by all importing (destination) countries D from each source country S are calculated as

$$M^K_{Ds} = \sum_{k=1}^{K} \sum_{d=1}^{D} m^k_{ds},$$ \hfill (2)

which corresponds to the reported imports of $1,180,000$ in Table 1. From here, we calculate the reporting distance (δ^k_{sd}) of each product as the difference of each reported export value (x^k_{sd}) from its mirror import value (m^k_{ds}) reported by the corresponding import partner as

$$\delta^k_{sd} = m^k_{ds} - x^k_{sd}.$$ \hfill (3)

Now we calculate the total absolute reporting distance (δ^K_{sD}) of all Brazil’s reported export values from its counterparts reported import values as

$$\delta^K_{sD} = \sum_{k=1}^{K} \sum_{d=1}^{D} |\delta^k_{sd}|.$$ \hfill (4)

In Table 1, this corresponds to $520,000$. Finally, the EWF (w^K_s) for Brazil is then derived as one
minus the ratio between the total absolute reporting distance and the sum of Brazil’s reported total exports and all importing countries’ reported total imports from Brazil as:

\[w_s^x = 1 - \frac{\delta_{sD}^K}{X_{sD}^K + M_{Ds}^K}. \]

(5)

Intuitively, if a country reports export values that are close to the reported import values by the respective importer, the country will score a high \(w_s^x \); on the other hand, countries having higher discrepancies with their counterparts’ reported imports will score a lower value. Naturally, the \(w_s^x \) ranges between zero and one.

3.1.2 Import Weighting Factors

If we consider trade from the importing country’s perspective, we can derive an analogous weighting factor for imports. An example is provided in Table A1 in the appendix, where we consider Tunisia’s imports, assuming three respective source countries: Brazil, Bangladesh, and Australia. We now consider the total value of Tunisia’s reported imports from all its import partners and all its import sources’ reported export values to Tunisia. We then calculate the total absolute reporting distance of Tunisia’s reported imports from its counterparts’ reported exports. Finally, we derive the import weighting factor (IWF, \(w_d^m \)). Formally, the IWF is derived analogously to equation 5 with

\[w_d^m = 1 - \frac{\delta_{dS}^K}{M_{dS}^K + X_{dS}^K}. \]

(6)

where \(\delta_{dS}^K = \sum_{k=1}^{K} \sum_{s=1}^{S} |\delta_{ds}^k|, M_{dS}^K = \sum_{k=1}^{K} \sum_{s=1}^{S} m_{ds}^k, \) and \(X_{dS}^K = \sum_{k=1}^{K} \sum_{s=1}^{S} x_{ds}^k. \) These three terms constitute the counterparts of equations 4, 1, and 2 from the export perspective.

3.1.3 Calculating Weighted Trade Values

The EWF and IWF values provide proxies for the reliability levels with which each country reports its exports and imports, based entirely on reported data, as opposed to ad-hoc assumptions about the reliability of one country’s data over another. With this information, we can now revisit each trade entry – for instance, our example coffee exports from Brazil to Tunisia. If
Brazil reports an exported value of $100,000, but Tunisia reports importing $60,000, then which entry is more reliable and by how much? We can now use the EWF and the IWF values to weigh these values according to how reliable the respective country’s reporting is. Formally, we can calculate the weighted export value of product k (e.g., coffee) from source country s (e.g., Brazil) to destination country d (e.g., Tunisia) as

$$\hat{x}_{sd}^k = \frac{w_x^s}{w_x^s + w_m^d} \times x_{sd}^k + \frac{w_m^d}{w_m^d + w_x^s} \times m_{ds}^k.$$ (7)

Intuitively, if Brazil had a strong EWF and Tunisia had a weak IWF, then the first fraction \(\frac{w_x^s}{w_x^s + w_m^d}\) would be closer to one. Consequently, the value reported by Brazil would carry more weight, i.e., the predicted actual export value \(\hat{x}_{sd}^k\) would be closer to $100,000. Alternatively, if Tunisia’s IWF was more credible, \(\hat{x}_{sd}^k\) would converge closer to $60,000. In our example, the predicted export of coffee from Brazil to Tunisia is \((\frac{0.755}{0.755+0.665} \times 100,000 + \frac{0.665}{0.755+0.665} \times 60,000) = $81,268\) (see Table A1 for Tunisia’s IWF in this example). This method allows us to derive a weighted value for every reported trade entry, including situations where one country reports no export but its corresponding import partner does report a non-zero value.\(^9\)

Likewise, we can derive predicted import values \(\hat{m}_{ds}^k\) for each reported import product, using the importing country’s IWF \(w_m^d\) and the corresponding export country’s EWF \(w_x^s\). Formally, this translates to

$$\hat{m}_{ds}^k = \frac{w_m^d}{w_d^m + w_x^s} \times m_{ds}^k + \frac{w_x^s}{w_d^m + w_x^s} \times x_{sd}^k.$$ (8)

In sum, equations 7 and 8 provide us with a weighted value for every import and export entry in the product-country-year dimension.

\(^9\)To illustrate this, consider our example from Table 1, where Tunisia reports $10,000 worth of glass mirror imports (HS 4-digit code 7009) from Brazil. Brazil, on the other hand, reports no export of this item to Tunisia. Using equation 7, we can estimate a weighted export value of glass mirrors from Brazil to Tunisia, which in this case is \(\frac{0.755}{0.755+0.665} \times 0 + \frac{0.665}{0.755+0.665} \times 10,000 = $4,683.\)
3.2 Step 2: Constructing Trade Misreporting Indices

With these derivations, we are now ready to construct misreporting indices. Specifically, for every country and year, we can derive (i) an overall misreporting index, (ii) an under-reporting index, and (iii) an over-reporting index for exports and imports. We begin with considering exports and then move to imports in Section 3.2.2 before considering overall misreporting in Section 3.2.3.

3.2.1 Export Misreporting Indices

First, we find the misreported export value \(\tilde{x}_{sd}^k \) for each product as the difference between the reported value \(x_{sd}^k \) and the weighted value \(\hat{x}_{sd}^k \):

\[
\tilde{x}_{sd}^k = x_{sd}^k - \hat{x}_{sd}^k.
\]
(9)

To gain an overall picture of a country’s export misreporting, we need to sum up their product-wise misreported export values. However, exporters of a country might under-report some values but over-report others, based on the individual incentives. Therefore, a simple summation of product-wise misreported values would cancel out some of the negative and positive misreported values and, hence, we would fail to capture the actual magnitude of trade misreporting in that country and year.

To circumvent this issue, we sum the absolute values. Formally, we calculate the total absolute misreported export value \(\tilde{X}_s^K \) for each source country \(s \) and all its export products \(k \) to all its export destinations \(d \) as

\[
\tilde{X}_s^K = \sum_{k=1}^{K} \sum_{d=1}^{D} |\tilde{x}_{sd}^k|.
\]
(10)

\(\tilde{X}_s^K \) gives us a dollar estimate of the total absolute export misreporting of any given country in any given year. However, this would still make a comparison across countries and time difficult, since clearly countries that trade more and in larger volumes would report higher values of \(\tilde{X}_s^K \). To derive a comparable index that is naturally bounded between zero and one, our final step consists in putting \(\tilde{X}_s^K \) in perspective to the sum of the country’s total reported
export values \((X_s^K)\) and the total absolute export misreporting value \((\tilde{X}_s^K)\). This step is perhaps best comparable to a so-called Contest Success Function (CSF, e.g., see Buchanan et al., 1980). Formally, we label the overall export misreporting index for source country \(s\) as \(MRI_s^x\) with

\[
MRI_s^x = \frac{\tilde{X}_s^K}{X_s^K + \tilde{X}_s^K}.
\]

(11)

Further, if we are specifically interested in export under-reporting, we can sum up the under-reported export values only. Thus, we consider only those \(\tilde{x}_{sd}^k\) values from equation 9 that are negative. Denoting these with \(\tilde{x}_{sd}^k\), we arrive at the total under-reported export value of

\[
\tilde{X}_s^K = \sum_{k=1}^{K} \sum_{d=1}^{D} |\tilde{x}_{sd}^k|
\]

(12)

and the export under-reporting index becomes

\[
URI_s^x = \frac{\tilde{X}_s^K}{X_s^K + \tilde{X}_s^K}.
\]

(13)

Similarly, assume we are interested in over-reported exports only, labeling these \(\overline{x}_{sd}^k\). In this case, we only consider those values from equation 9 that return positive values, i.e., the reported export value is higher than the weighted value. Consequently, we derive the total over-reported export value via

\[
\overline{X}_s^K = \sum_{k=1}^{K} \sum_{d=1}^{D} |\overline{x}_{sd}^k|
\]

(14)

and the export over-reporting index becomes

\[
ORI_s^x = \frac{\overline{X}_s^K}{X_s^K + \overline{X}_s^K}.
\]

(15)

In sum, we can derive three distinct export misreporting indices: \((i)\) the overall export misreporting index \((MRI_s^x)\), \((ii)\) the export under-reporting index \((URI_s^x)\), and \((iii)\) the export over-reporting index \((ORI_s^x)\).
3.2.2 Import Misreporting Indices

The corresponding indices for import misreporting follow analogously and we only sketch them briefly here. Specifically, if we are interested in the overall degree of import misreporting, we first calculate misreported import values (\tilde{m}_{ds}^k) for each product as the difference between the reported value (m_{ds}^k) and the weighted value (\hat{m}_{ds}^k) as

$$\tilde{m}_{ds}^k = m_{ds}^k - \hat{m}_{ds}^k.$$ \hfill (16)

From here, we get the total overall misreported import value for each importer by taking absolute values of equation 16, leading to

$$\tilde{M}_K^d = \sum_{k=1}^{K} \sum_{s=1}^{S} |\tilde{m}_{ds}^k|.$$ \hfill (17)

Next, to derive an overall import misreporting index (MRI_m^d), we calculate

$$MRI_m^d = \frac{\tilde{M}_K^d}{\tilde{M}_K^d + M_K^D}.$$ \hfill (18)

Finally, we can construct import under- and import over-reporting indices via

$$URI_m^d = \frac{M_K^d}{M_K^d + M_K^D}$$ \hfill (19)

and

$$ORI_m^d = \frac{\tilde{M}_K^d}{\tilde{M}_K^d + M_K^D}.$$ \hfill (20)

Overall, this gives us three distinct import misreporting indices: (i) the overall import misreporting index (MRI_m^d), (ii) the import under-reporting index (URI_m^d), and (iii) the import over-reporting index (ORI_m^d).
3.2.3 Overall Misreporting Index

Depending on the underlying research question, one may sometimes be more interested in misreporting exports or imports and over- or under-reporting in either domain. For example, if one was interested in questions related to tariff evasion, the import under-reporting index may be of particular interest. In turn, if we were studying the potential abuse of export subsidies, the export over-reporting index may be most appropriate to consider.

However, in its most general context researchers may be interested in an overall index that describes the degree of trade misreporting by a country in a given year. Following our methodology laid out in the previous pages, we can derive a trade misreporting index of country \(i \) in year \(t \) \((TMRI_{it}) \) via

\[
TMRI_{it} = \frac{\tilde{X}_s^K + \tilde{M}_d^K}{(X_s^K + M_d^K) + (\tilde{X}_s^K + \tilde{M}_d^K)}.
\] (21)

This provides our seventh and final index to measure trade misreporting. With these concepts in mind, we now turn to the data to illustrate the respective indices, followed by a country case study and an application of one of the developed indices.

4 The Index in Practice

4.1 Trade Data

We retrieve trade data using the World Trade Solution database (WITS), which is derived from the United Nations International Trade Statistics Database (UN Comtrade).\(^{10}\) UN Comtrade contains bilateral import and export statistics on an annual basis from over 200 countries. The International Monetary Fund (IMF), the World Bank, the Food and Agriculture Organisation (FAO), and the International Trade Center (ITC) also publish and disseminate trade data on an

\(^{10}\)The World Bank, in collaboration with the United Nations Conference on Trade and Development (UNCTAD) and in consultation with organizations such as the International Trade Center, United Nations Statistical Division (UNSD), and the World Trade Organization (WTO), developed the World Integrated Trade Solution (WITS). The database is available under http://wits.worldbank.org/about_wits.html. For more detailed information about the UN Comtrade data collection, coding, valuation, and processing system, we refer to the United Nations International Trade Statistics Knowledgebase, available under https://unstats.un.org/unsd/tradekb/Knowledgebase/50075/What-is-UN-Comtrade.
annual basis. We use UN Comtrade as our single source of trade data since it is considered as the most comprehensive and primary source of international trade statistics. We refer to ChathamHouse (2018) for a detailed discussion about different available sources of merchandise trade statistics and the comprehensiveness of the UN Comtrade.

The existing literature analyzing trade misreporting uses both aggregated and disaggregated trade data to identify and measure misreporting. However, a country could misreport export and import products, which may cancel out in aggregate. Therefore, aggregated trade data would not allow us to isolate the actual extent of misreporting, and neither could we distinguish between export- and import-specific over- and under-reporting. Consequently, we employ disaggregated trade data and select the HS 4-digit level for our analysis. Although one could well disaggregate trade down to the 6-digit level, a simple example may illustrate why the 4-digit level may be most appropriate when exploring misreported trade by minimizing unintentional misclassifications. To see this, consider our coffee example. The HS 2-digit level identifies Coffee, Tea, Maté, and Spices; the 4-digit level considers Coffee, whether or not roasted or decaffeinated; the 6-digit level identifies Coffee, not roasted and not decaffeinated. It is quite conceivable that one party could easily mistake roasted for decaffeinated coffee (or vice versa), whereas it is more difficult to mistake coffee for tea. Of course, one could easily exploit more (or less) disaggregated levels of classifications in deriving our indices and we refer to Section A.2 for a more detailed explanation of why we choose the 4-digit level.

Another challenge in identifying misreporting from bilateral mirror trade flows comes from separating insurance and freight costs from reported import values. In fact, the majority of the associated literature does not specifically consider this issue (e.g., see Fisman and Wei, 2004, Fisman and Wei, 2009, and Mishra et al., 2008), whereas some studies employ an average

11For example, Kellenberg and Levinson (2016) and Egger and Larch (2012) use aggregated trade data from UN Comtrade and Buehn and Eichler (2011) use aggregated trade figures from IMF’s Directions of Trade statistics (DOTS). Ferrantino et al. (2012), Fisman and Wei (2004), and Mishra et al. (2008) use HS-6 digit data from UN Comtrade, whereas Ferrantino and Wang (2008) use 8-digit trade data for China and Hong Kong from the Customs General Administration of China and the Census and Statistical Department of Hong Kong, respectively. Further, Ferrantino and Wang (2008) employ 6-digit data from USITC’s Oracle database to analyze discrepancies in reported trade data. Javorcik and Narciso (2017) also use HS 6-digit trade data from UN Comtrade.

12Most countries report import data on the cost, insurance, and freight (CIF) basis, while exports are reported based on a free on board (FOB) value.
adjustment factor of 1.1, as suggested by the IMF, 1993 (e.g., see Buehn and Eichler, 2011, and UNCTAD, 2016). However, the economics and transport literature describes a declining trend in transport cost over the decades (see Hummels, 2007, and Timmer et al., 2012, among others). In March 2017, the IMF introduced a new CIF/FOB factor of six percent to convert imports CIF into exports FOB (and vice versa; Marini et al., 2018; and Miao and Fortanier, 2017). We readily use this conversion factor in our analysis. In reality, this definition does not produce substantial changes in our results and we derive virtually identical indices when employing the traditional conversion factor of 1.1 (see Section A.3). Similarly, the role of entrepôt trade has been investigated with respect to discrepancies in reported trade data (e.g., see Feenstra et al., 1999). Nevertheless, our indices only change marginally if we address those issues; for example, once we consider Hong Kong (the largest entrepôt worldwide) and China as one trading country, the correlation coefficient with our baseline overall misreporting index becomes 0.99. Thus, although the role of entrepôt trade may affect the ranking of individual countries in our indices, it does not affect the overall rankings and indices in general. (Nevertheless, it would of course be straightforward to follow our methodology and adjust accordingly.)

Overall, we incorporate bilateral trade data reported by 160 WTO members at the HS 4-digit product level from 1996-2015, using the HS1996 version (also known as HS1). After excluding products under Chapter 99 (representing Commodities not specified), this produces 58,515,054 pairs of trade data.

4.2 Most Recent Country Rankings

Following our theoretical framework outlined in Section 3, we derive seven trade misreporting indices for each reporting country per year for the period of 1996-2015. By construction, all indices range between zero and one, where values approaching zero represent less misreporting and higher values indicate more misreporting. As an example, Table 2 lists the top and bottom ten countries for the total misreporting index (TMRI) among the 127 countries for which data are available.

available in 2015, the most recent year in our database. Our index suggests that, in 2015, the countries that misreport most in their trade statistics are Togo, Antigua and Barbuda, Panama, Afghanistan, and Malta, whereas Canada, Peru, Chile, Mexico, and the US are the countries with the lowest misreporting index. (In Table A4, we display correlation coefficients among the respective trade misreporting indices, whereas Table A5 presents correlations coefficients with popular country-level variables. Finally, Table A6 reports summary statistics of the indices.)

Table 2: Empirical results for the overall trade misreporting index (TMRI) for top and bottom ten countries in 2015.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Overall Trade misreporting index</th>
<th>Rank</th>
<th>Country</th>
<th>Overall Trade misreporting index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Togo</td>
<td>0.784</td>
<td>118</td>
<td>Brazil</td>
<td>0.154</td>
</tr>
<tr>
<td>2</td>
<td>Antigua and Barbuda</td>
<td>0.713</td>
<td>119</td>
<td>Japan</td>
<td>0.148</td>
</tr>
<tr>
<td>3</td>
<td>Panama</td>
<td>0.712</td>
<td>120</td>
<td>Germany</td>
<td>0.144</td>
</tr>
<tr>
<td>4</td>
<td>Afghanistan</td>
<td>0.636</td>
<td>121</td>
<td>Italy</td>
<td>0.140</td>
</tr>
<tr>
<td>5</td>
<td>Malta</td>
<td>0.614</td>
<td>122</td>
<td>Argentina</td>
<td>0.137</td>
</tr>
<tr>
<td>6</td>
<td>Benin</td>
<td>0.613</td>
<td>123</td>
<td>United States</td>
<td>0.133</td>
</tr>
<tr>
<td>7</td>
<td>Kuwait</td>
<td>0.592</td>
<td>124</td>
<td>Mexico</td>
<td>0.133</td>
</tr>
<tr>
<td>8</td>
<td>Sierra Leone</td>
<td>0.561</td>
<td>125</td>
<td>Chile</td>
<td>0.124</td>
</tr>
<tr>
<td>9</td>
<td>Solomon Islands</td>
<td>0.494</td>
<td>126</td>
<td>Peru</td>
<td>0.123</td>
</tr>
<tr>
<td>10</td>
<td>Niger</td>
<td>0.481</td>
<td>127</td>
<td>Canada</td>
<td>0.098</td>
</tr>
</tbody>
</table>

To provide a quantitative example as to what the index means in practice, consider the case of Togo. A score of 0.784 in the TMRI indicates that for every US$100 of reported trade, Togo misreported its trade value by approximately US$363. This follows directly from our index calculation in equation 11 since for reporting US$100, we get $0.784 = \frac{m}{m+100}$, which, after some simple algebra, produces $m = 363$. Since the TMRI incorporates all possible types of trade misreporting, it may be worth to distinguish further between imports and exports, as well as under- and over-reporting. Tables 3 and 4 provide the respective lists. These distinctions provide us with more detail about how a particular country received a high or low score on the overall TMRI. For example, Togo’s misreporting in 2015 is primarily driven by under-reporting.

\[A \text{ full list of all trade misreporting indices for } 160 \text{ WTO members for the } 1996-2015 \text{ period can be accessed under } \text{https://farhadm.weebly.com/trade-misreporting-index.html} \]
imports, and the country remains absent from all three the top ten lists for export misreporting.

Although Table 3 suggests some notorious misreporters that may have been expected, they also produce results that are perhaps surprising at first sight. For example, export over-reporting may be much less of an issue among top offenders than export under-reporting, as indicated by the top values in either index (0.991 and 0.433; see Panels B and C of Table 3). Consequently, the ten countries that are suggested to misreport exports most are also those who under-report exports most. In turn, the top five countries in the export over-reporting category are African. Further, although five out of the ten countries that are under-reporting exports the least are within the European Union (EU), no EU country makes that list when it comes to export over-reporting.

Table 4 turns to our three import misreporting indices. As with exports, the values of the top ten suggest that under-reporting imports is more of an issue than over-reporting imports. Seven OECD nations are among the bottom ten when it comes to misreporting imports in general, whereas the EU nations Croatia, Spain, Denmark, Portugal, the United Kingdom, Italy, and Romania are suggested to be least prone to over-reporting imports.

It may also make sense to consider the corresponding indices within averages of country groups over the entire timeframe, as displayed in Table 5. On average, high-income OECD countries misreport the least, whereas low-income countries misreport their trade values most during the 1996-2015 period. This may be reflective of a weak state of governance, more restrictive policies, and capacity constraints to record and report trade statistics accurately. However, and perhaps surprisingly, high-income non-OECD countries are the second-highest trade misreporting country group, and the highest export under-reporting country group. Interestingly, this high-income non-OECD country group includes Kuwait, Saudi Arabia, and the United Arab Emirates – all of which heavily reliant on exporting oil and other natural resources. Although speculative at this point, this could indicate possible illicit outflows of capital through export under-reporting. These findings are also commensurate with the regional average, placing the Middle East and North Africa as the top export misreporting region. North America
Table 3: Empirical results for the export misreporting index for top and bottom ten countries in 2015.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Index</th>
<th>Rank</th>
<th>Country</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel A: Overall Export Misreporting</td>
<td></td>
<td></td>
<td>Panel B: Export Under-Reporting</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Antigua and Barbuda</td>
<td>0.991</td>
<td>118</td>
<td>El Salvador</td>
<td>0.121</td>
</tr>
<tr>
<td>2</td>
<td>Macao</td>
<td>0.983</td>
<td>119</td>
<td>Bolivia</td>
<td>0.121</td>
</tr>
<tr>
<td>3</td>
<td>Kuwait</td>
<td>0.889</td>
<td>120</td>
<td>Germany</td>
<td>0.116</td>
</tr>
<tr>
<td>4</td>
<td>Sierra Leone</td>
<td>0.884</td>
<td>121</td>
<td>Mexico</td>
<td>0.113</td>
</tr>
<tr>
<td>5</td>
<td>Panama</td>
<td>0.841</td>
<td>122</td>
<td>Angola</td>
<td>0.107</td>
</tr>
<tr>
<td>6</td>
<td>Yemen</td>
<td>0.823</td>
<td>123</td>
<td>Argentina</td>
<td>0.104</td>
</tr>
<tr>
<td>7</td>
<td>Hong Kong</td>
<td>0.806</td>
<td>124</td>
<td>Chile</td>
<td>0.101</td>
</tr>
<tr>
<td>8</td>
<td>Saudi Arabia</td>
<td>0.737</td>
<td>125</td>
<td>Peru</td>
<td>0.100</td>
</tr>
<tr>
<td>9</td>
<td>Cyprus</td>
<td>0.707</td>
<td>126</td>
<td>Brunei</td>
<td>0.074</td>
</tr>
<tr>
<td>10</td>
<td>United Arab Emirates</td>
<td>0.695</td>
<td>127</td>
<td>Canada</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>Panel C: Export Over-Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sierra Leone</td>
<td>0.433</td>
<td>118</td>
<td>New Zealand</td>
<td>0.052</td>
</tr>
<tr>
<td>2</td>
<td>Niger</td>
<td>0.420</td>
<td>119</td>
<td>Japan</td>
<td>0.051</td>
</tr>
<tr>
<td>3</td>
<td>Central African Republic</td>
<td>0.398</td>
<td>120</td>
<td>Chile</td>
<td>0.050</td>
</tr>
<tr>
<td>4</td>
<td>Zimbabwe</td>
<td>0.393</td>
<td>121</td>
<td>Macedonia</td>
<td>0.050</td>
</tr>
<tr>
<td>5</td>
<td>Zambia</td>
<td>0.380</td>
<td>122</td>
<td>Brunei</td>
<td>0.048</td>
</tr>
<tr>
<td>6</td>
<td>Kuwait</td>
<td>0.303</td>
<td>123</td>
<td>Peru</td>
<td>0.048</td>
</tr>
<tr>
<td>7</td>
<td>Afghanistan</td>
<td>0.301</td>
<td>124</td>
<td>Angola</td>
<td>0.048</td>
</tr>
<tr>
<td>8</td>
<td>Mozambique</td>
<td>0.292</td>
<td>125</td>
<td>St.Vincent and Grenadines</td>
<td>0.048</td>
</tr>
<tr>
<td>9</td>
<td>Yemen</td>
<td>0.288</td>
<td>126</td>
<td>Argentina</td>
<td>0.041</td>
</tr>
<tr>
<td>10</td>
<td>Hong Kong</td>
<td>0.276</td>
<td>127</td>
<td>Canada</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Table 4: Empirical results for the import misreporting index for top and bottom ten countries in 2015.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Top 10 Misreporting Country</th>
<th>Index</th>
<th>Rank</th>
<th>Bottom 10 Misreporting Country</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel A: Overall Import Misreporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Togo</td>
<td>0.810</td>
<td>118</td>
<td>India</td>
<td>0.150</td>
</tr>
<tr>
<td>2</td>
<td>Panama</td>
<td>0.694</td>
<td>119</td>
<td>Chile</td>
<td>0.147</td>
</tr>
<tr>
<td>3</td>
<td>Antigua and Barbuda</td>
<td>0.660</td>
<td>120</td>
<td>United Kingdom</td>
<td>0.145</td>
</tr>
<tr>
<td>4</td>
<td>Afghanistan</td>
<td>0.644</td>
<td>121</td>
<td>Japan</td>
<td>0.144</td>
</tr>
<tr>
<td>5</td>
<td>Malta</td>
<td>0.641</td>
<td>122</td>
<td>Italy</td>
<td>0.143</td>
</tr>
<tr>
<td>6</td>
<td>Benin</td>
<td>0.638</td>
<td>123</td>
<td>Peru</td>
<td>0.142</td>
</tr>
<tr>
<td>7</td>
<td>Sierra Leone</td>
<td>0.488</td>
<td>124</td>
<td>Romania</td>
<td>0.139</td>
</tr>
<tr>
<td>8</td>
<td>Kyrgyz Republic</td>
<td>0.461</td>
<td>125</td>
<td>Canada</td>
<td>0.125</td>
</tr>
<tr>
<td>9</td>
<td>Central African Republic</td>
<td>0.454</td>
<td>126</td>
<td>Botswana</td>
<td>0.116</td>
</tr>
<tr>
<td>10</td>
<td>Brunei</td>
<td>0.453</td>
<td>127</td>
<td>United States</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Import Under-Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Togo</td>
<td>0.801</td>
<td>118</td>
<td>India</td>
<td>0.061</td>
</tr>
<tr>
<td>2</td>
<td>Panama</td>
<td>0.681</td>
<td>119</td>
<td>Costa Rica</td>
<td>0.058</td>
</tr>
<tr>
<td>3</td>
<td>Malta</td>
<td>0.618</td>
<td>120</td>
<td>Peru</td>
<td>0.058</td>
</tr>
<tr>
<td>4</td>
<td>Antigua and Barbuda</td>
<td>0.618</td>
<td>121</td>
<td>El Salvador</td>
<td>0.058</td>
</tr>
<tr>
<td>5</td>
<td>Benin</td>
<td>0.610</td>
<td>122</td>
<td>Japan</td>
<td>0.054</td>
</tr>
<tr>
<td>6</td>
<td>Afghanistan</td>
<td>0.565</td>
<td>123</td>
<td>China</td>
<td>0.053</td>
</tr>
<tr>
<td>7</td>
<td>Kyrgyz Republic</td>
<td>0.415</td>
<td>124</td>
<td>United States</td>
<td>0.052</td>
</tr>
<tr>
<td>8</td>
<td>Guinea</td>
<td>0.383</td>
<td>125</td>
<td>Botswana</td>
<td>0.050</td>
</tr>
<tr>
<td>9</td>
<td>Cambodia</td>
<td>0.374</td>
<td>126</td>
<td>Mexico</td>
<td>0.048</td>
</tr>
<tr>
<td>10</td>
<td>Brunei</td>
<td>0.369</td>
<td>127</td>
<td>Canada</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel C: Import Over-Reporting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sierra Leone</td>
<td>0.362</td>
<td>118</td>
<td>Croatia</td>
<td>0.084</td>
</tr>
<tr>
<td>2</td>
<td>Central African Republic</td>
<td>0.349</td>
<td>119</td>
<td>Spain</td>
<td>0.083</td>
</tr>
<tr>
<td>3</td>
<td>Afghanistan</td>
<td>0.336</td>
<td>120</td>
<td>Denmark</td>
<td>0.083</td>
</tr>
<tr>
<td>4</td>
<td>Niger</td>
<td>0.318</td>
<td>121</td>
<td>Portugal</td>
<td>0.081</td>
</tr>
<tr>
<td>5</td>
<td>Burkina Faso</td>
<td>0.280</td>
<td>122</td>
<td>Hong Kong</td>
<td>0.078</td>
</tr>
<tr>
<td>6</td>
<td>Burundi</td>
<td>0.274</td>
<td>123</td>
<td>United Kingdom</td>
<td>0.077</td>
</tr>
<tr>
<td>7</td>
<td>Macao</td>
<td>0.265</td>
<td>124</td>
<td>Botswana</td>
<td>0.073</td>
</tr>
<tr>
<td>8</td>
<td>Guyana</td>
<td>0.264</td>
<td>125</td>
<td>Italy</td>
<td>0.069</td>
</tr>
<tr>
<td>9</td>
<td>Solomon Islands</td>
<td>0.254</td>
<td>126</td>
<td>Romania</td>
<td>0.068</td>
</tr>
<tr>
<td>10</td>
<td>Uganda</td>
<td>0.254</td>
<td>127</td>
<td>United States</td>
<td>0.064</td>
</tr>
</tbody>
</table>
remains the least misreporting region, both in terms of exports and imports, while Sub-Saharan Africa is the top import misreporting region. With these descriptive data in mind, we now turn to exploring misreported trade data for China as a prominent example.

4.3 Trade Misreporting: The Case of China

The case of China has generated particular interest in the trade misreporting literature (for instance, see Feenstra et al., 1999, Fisman and Wei, 2004, and Ferrantino et al., 2012). China’s massive economic growth over the past three decades has seen the country rise to the world’s largest merchandise trader in 2015. Figure 1 visualizes China’s TMRI over our sample period from 1996 to 2015. Interestingly, the index starts to decline sharply right before 2000 and through to 2011, indicating a constant improvement in trade reporting relative to its trading partners. In terms of magnitude, this sizeable drop from 1998 to 2011 is equivalent to more than two-thirds of a standard deviation of the TMRI across all countries and years. Interestingly, China formally joined the WTO in 2001, after the respective negotiations negotiations lasted a couple of years. In theory, joining the WTO required China to liberalize much of its trading sectors, along with streamlining its trade reporting system and providing more transparency. Although a range of motivations and policy responses may influence trade misreporting, China’s accession to the WTO, that required steep reduction of its tariff and other non-tariff barriers, drastic overhauling of its state owned enterprises (SOEs) and gradual opening of the financial system (see, for instance Lu and Yu, 2015, Khandelwal et al., 2013, Bajona and Chu, 2010, Prasad et al., 2005 and He et al., 2014), as well as substantial reduction in trade policy uncertainty with respect to its trading partners (see Feng et al., 2017 and Brandt et al., 2017), is likely to be reflected in this declining trend of the TMRI.

Further, Figure 2 illustrates China’s development when it comes to under-reporting and over-reporting. Intuitively, import-overinvoicing or export under-invoicing can be used to circumvent outward capital controls and therefore transfer money abroad via official channels (e.g., see Bhagwati, 1964, 1967). In turn, foreign capital can be channelled into the country through over-invoicing of exports or under-invoicing of imports. One hypothesis that could
Table 5: Averages over time and by income and regional groups for different trade misreporting indices, using all data from 1996-2015.

<table>
<thead>
<tr>
<th></th>
<th>Overall trade misreporting</th>
<th>Import misreporting</th>
<th>Import under-reporting</th>
<th>Import over-reporting</th>
<th>Export misreporting</th>
<th>Export under-reporting</th>
<th>Export over-reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Averages by income groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-income, OECD</td>
<td>0.184</td>
<td>0.188</td>
<td>0.106</td>
<td>0.102</td>
<td>0.177</td>
<td>0.089</td>
<td>0.105</td>
</tr>
<tr>
<td>High-income, non-OECD</td>
<td>0.364</td>
<td>0.318</td>
<td>0.212</td>
<td>0.162</td>
<td>0.444</td>
<td>0.378</td>
<td>0.155</td>
</tr>
<tr>
<td>Upper middle income</td>
<td>0.286</td>
<td>0.280</td>
<td>0.164</td>
<td>0.162</td>
<td>0.294</td>
<td>0.215</td>
<td>0.123</td>
</tr>
<tr>
<td>Lower middle income</td>
<td>0.315</td>
<td>0.312</td>
<td>0.196</td>
<td>0.174</td>
<td>0.317</td>
<td>0.231</td>
<td>0.144</td>
</tr>
<tr>
<td>Low income</td>
<td>0.432</td>
<td>0.405</td>
<td>0.273</td>
<td>0.225</td>
<td>0.463</td>
<td>0.343</td>
<td>0.248</td>
</tr>
<tr>
<td>Panel B: Averages by regional groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Asia & Pacific</td>
<td>0.267</td>
<td>0.255</td>
<td>0.144</td>
<td>0.152</td>
<td>0.299</td>
<td>0.224</td>
<td>0.126</td>
</tr>
<tr>
<td>Europe & Central Asia</td>
<td>0.258</td>
<td>0.262</td>
<td>0.169</td>
<td>0.131</td>
<td>0.258</td>
<td>0.161</td>
<td>0.133</td>
</tr>
<tr>
<td>Latin America & Caribbean</td>
<td>0.315</td>
<td>0.302</td>
<td>0.197</td>
<td>0.160</td>
<td>0.341</td>
<td>0.280</td>
<td>0.117</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>0.352</td>
<td>0.276</td>
<td>0.163</td>
<td>0.160</td>
<td>0.418</td>
<td>0.354</td>
<td>0.148</td>
</tr>
<tr>
<td>North America</td>
<td>0.112</td>
<td>0.111</td>
<td>0.049</td>
<td>0.069</td>
<td>0.119</td>
<td>0.072</td>
<td>0.055</td>
</tr>
<tr>
<td>South Asia</td>
<td>0.260</td>
<td>0.269</td>
<td>0.142</td>
<td>0.170</td>
<td>0.252</td>
<td>0.172</td>
<td>0.111</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.384</td>
<td>0.373</td>
<td>0.233</td>
<td>0.219</td>
<td>0.398</td>
<td>0.285</td>
<td>0.211</td>
</tr>
<tr>
<td>Western Europe</td>
<td>0.206</td>
<td>0.209</td>
<td>0.132</td>
<td>0.101</td>
<td>0.200</td>
<td>0.104</td>
<td>0.122</td>
</tr>
<tr>
<td>World average</td>
<td>0.296</td>
<td>0.285</td>
<td>0.177</td>
<td>0.157</td>
<td>0.312</td>
<td>0.226</td>
<td>0.143</td>
</tr>
</tbody>
</table>
(at least in part) explain China’s changes in these indices over time is related to possibly illicit flows of capital. Recently, Chen and Qian (2016) developed extensive measures to capture the ongoing changes in China’s capital control regime, using detailed information from the IMF’s Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER) for the 1999 to 2012 period. Their de jure and hybrid indices reflect a persistent process of liberalizing China’s capital account since 2000. Specifically, Chen and Qian (2016) report that China liberalized its capital outflow controls faster than its control on capital inflows, which may encourage outward FDI to support China’s ‘going global’ policy initiative of 2002. Interestingly, both our import over-reporting and export under-reporting indices for China in Figure 2 exhibit a consistent downward trend since 2001. In fact, our import over-reporting index correlates positively with Chen and Qian’s (2016) de jure and hybrid capital outflow control indices, with correlations of 0.90 and 0.75, respectively. Further, our export under-reporting index also correlates positively with Chen and Qian’s (2016) de jure and hybrid capital outflow control indices, with even stronger correlation coefficients of 0.98 and 0.93. In sum, our derived indices are consistent with the specific explanation put forth by Chen and Qian (2016).

Finally, Chen and Qian’s (2016) hybrid index shows higher magnitudes of inflow controls
than their *de jure* index. Chen and Qian (2016) report that China has experienced an episode of 'hot money' inflows since 2003 and the Chinese government’s constant initiatives to restrain such capital inflows. Similarly, Ferrantino et al. (2012) suggest the possibility of 'hot money' inflows from the US into China during the 2003-2008 period. Interestingly, our export over-reporting index for China reveals a constant upward trend beginning in 2003, which is consistent with that hypothesis. However, it has reversed and started to decline from 2013 onwards, which may reflect China’s sharp relaxation of its capital inflow regime during that period. We particularly notice China’s new rules on FDI in late 2011, which officially allows foreigners to invest on the Chinese mainland with offshore funds.\footnote{For details on these measures, we refer to the Global Legal Monitor of the Library of Congress of the US (available under http://www.loc.gov/law/foreign-news/article/china-new-rules-on-foreign-direct-investment-with-renminbi/) and the IMF’s AREAER dataset (available under http://www.elibrary-areaer.imf.org/Pages/ChapterQuery.aspx).} China’s import under-reporting index remains almost stable since 2000.

Overall, these descriptions are, of course, purely suggestive at this point. Nevertheless, it is interesting to see that our indices show developments that are consistent with hypotheses about China’s development and closely correlated with other China-specific indices. With this in mind, we now turn to the final contribution of this paper with a specific empirical application of our import under-reporting index to the role of tariffs and value-added taxes.
5 Empirical Application: Tariff and VAT Rates

5.1 Setting

In this section, we provide one application of our misreporting indices, predicting the import under-reporting index with tariff and VAT rates in our panel dataset. We choose to examine the under-reporting of imports because it remains the main focus of the existing literature on trade misreporting (for example, see Javorcik and Narciso, 2008, Mishra et al., 2008, or Ferrantino et al. (2012)). Intuitively, an economic agent may try to curb their import costs by avoiding (or at least minimizing) tariff payments – a value that is usually based on the import value. In other words, everything else equal, we would expect import values to be more under-reported when tariff rates are high. Of course, a range of other factors may play an independent role and we will shortly discuss the list of control variables we consider.

Indeed, the existing literature finds empirical evidence of systematic under-reporting of imports motivated by burdensome tariffs. Bhagwati (1964) reports strong evidence of understated imports at the Turkish end, which is systematically correlated with tariffs and import controls; Fisman and Wei (2004) find Chinese imports from Hong Kong to be to be under-reported; Mishra et al. (2008) identify similar dynamics for Indian imports from its major trading partners; Ferrantino et al. (2012) suggest the same when it comes to trade between the US and China, as US importers are likely trying to avoid paying import tariffs. (As discussed before, these studies focus on either reported trade between a pair of bilateral trading partners or reported trade between a particular country of interest and its major trading partners.)

Our objective here is twofold. First, we want to examine whether our import under-reporting index is also supported by the economic intuition of import under-reporting, as evidenced by previous literature. Second, we want to evaluate whether import under-reporting motivated by tariff evasion could be a global phenomenon or whether this phenomenon remains unique to some selected bilateral trade relationships. In addition to the potential role of tariff rates, we also investigate whether VAT rates, which are calculated and payable according to the reported import value, are positively correlated with the import under-reporting index.
5.2 Econometric Specification

We estimate a simple linear regression model, predicting the import under-reporting index with tariff and VAT rates in country \(i \) and year \(t \). To properly isolate potential relationships, we also control for several other variables that may independently affect the reporting of imports. Further, we account for country- and year-fixed effects to control for any country- and time-specific phenomena that could drive under-reported imports. For instance, a country’s geography or regular trading partners (perhaps stemming from historical connections, such as colonialism) may systematically influence the reporting of trade data. Similarly, persistent cultural and institutional characteristics could affect misreporting. With respect to time-specific unobservables, global recessions or booms could systematically drive global misreporting rates. Two-way fixed effects are able to isolate our analysis from any such dynamics. Formally, we estimate

\[
URI_{i,t}^m = \beta_0 + \beta_1 \text{Tariff}_{i,t} + \beta_2 \text{VAT}_{i,t} + \sum X_{i,t} \gamma + \alpha_i + \omega_t + \epsilon_{i,t},
\]

where \(URI_{i,t}^m \) refers to the import under-reporting index for country \(i \) in year \(t \). \(\text{Tariff}_{i,t} \) measures the trade-weighted applied tariff rates for all products from all source countries to each importing country \(i \) at time \(t \), whereas \(\text{VAT}_{i,t} \) represents the value added tax rates applicable to all imports by the importing country. \(X_{i,t} \) constitutes a vector of other observable country characteristics that may carry an independent effect on reporting behavior. Specifically, we include measures for (i) capital account openness, (ii) trade openness, (iii) democracy, (iv) and corruption. Bhagwati (1964) and Ferrantino et al. (2012) discuss the possibility of misreporting of trade data as one of several methods to avoid capital controls, while Fisman and Wei (2009) reports a positive correlation between corruption and trade data discrepancies. Kellenberg and Levinson (2016) also employ capital controls and corruption while explaining misreported trade and tariff evasion. Further, we control for trade openness and democracy since higher levels of integration with the global trade network and a more democratic system, associated with more inclusive political institutions and the prevalence of the rule of law, may well form independent drivers of misreporting trade numbers. In addition, country- and time-fixed effects
are captured by α_i and ω_t, whereas $\epsilon_{i,t}$ represents the usual error term. Throughout our estimations we report both robust standard errors and clustered at the country level. Finally, we multiply our import under-reporting index by 100 to facilitate the quantitative interpretation of coefficients.

5.3 Data Sources

We access data on corruption levels from the Corruption Perceptions Index (CPI, provided by Transparencey International, 2017).16 From 1995 to 2011, the CPI ranged from zero to ten, but since 2012 the index ranges from zero to 100, following an update in methodology. We rescale earlier data to match the post-2011 range from zero to 100. Note that the CPI codebook specifically mentions this switch in measurement comes because researchers should not compare data before 2012 with those since then. In our case, however, accounting for time-fixed effects should account for such measurement issues. (Nevertheless, all our findings are consistent when excluding the CPI.)

GDP per capita (constant 2010 US$), trade weighted applied tariff rates, value added tax (VAT) rates, and population data are collected from the World Bank’s “World Development Indicators” (Group, 2016). For capital account openness, we use the Chinn-Ito index (KAOPEN), which measures a country’s degree of capital account openness.17 The scale of the KAOPEN index ranges from the “most financially open” valued of 2.37 to the “least financial open”, scored at -1.90. In addition, we use the polity2 variable from the Polity IV dataset to measure the country’s degree of democracy in the respective year (Marshall and Jaggers, 2017). This variable captures the regime authority spectrum on a 21-point scale ranging from -10 (complete autocracy) to +10 (consolidated democracy). Table A7 presents summary statistics of all variables used in this econometric analysis.

16The CPI has been developed by Transparency International since 1995, providing “country level annual corruption scores” based on the perceived levels of corruption, as determined by expert assessments and opinion surveys.

17The KAOPEN index was initially introduced by Chinn and Ito (2006) and the latest update covers the time period of 1970-2015 for 182 countries.
5.4 Empirical Results

The results from our econometric specifications are reported in Table 6. Note that we display robust standard errors in parentheses under the respective coefficients and standard errors clustered at the country level in brackets. We begin by examining the univariate relationships between the import under-reporting index and our two variables of interest: tariff and VAT rates. The corresponding coefficients are displayed in columns (1) and (2). Regression (3) then considers tariff and VAT rates as simultaneous predictors of the under-reporting of imports. In column (4), we introduce our set of control variables, while columns (5) and (6) incorporate country- and year-fixed effects. To facilitate the comparison of results across regressions, we only employ observations in which information for all variables is available. Nevertheless, all results are robust when using all available observations for the respective specifications.

The results concerning tariff and VAT rates provide strong support for the hypothesis that an increase in either rate is associated with a significant increase in the under-reporting of imports. These results emerge for all six specifications and are consistent with the discussed country-specific studies. It may also be useful to consider the derived magnitudes of the effects. In the most complete specification (column 6), the implied magnitudes for tariff and VAT rates are quite comparable. A one standard deviation increase in tariff rates (equivalent to approximately 4.6 points) would be associated with a 0.9 point rise in the import under-reporting index, on average. When it comes to VAT rates, a one standard deviation increase (equivalent to 5.3 points) corresponds to a 1.1 point increase in the import under-reporting index.

Finally, we can put these magnitudes in context with a simple back-of-the-envelope calculation. For example, what would a 2% change in the import under-reporting index really mean? Let’s take the example of India. In 2015, the value of the import under-reporting index for India was 0.060, meaning India under-reported its imports by around US$6.4 for US$100 reported. In 2015, total reported imports of India was US$390,745 million and the country’s trade-weighted average tariff rate was 6.35 percent. Therefore, an estimated $1.6 billion of Indian tariff revenue is suggested to be lost due to under-reporting of imports. Thus, a hypothetical 2 percent decrease in the value of the import under-reporting index of India would correspond to an
Table 6: Predicting the import under-reporting index with tariff and VAT rates in an unbalanced panel of 107 countries with annual data from 1996-2015.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariff</td>
<td>0.654</td>
<td>0.733</td>
<td>0.548</td>
<td>0.222</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.097)***</td>
<td>(0.100)***</td>
<td>(0.104)***</td>
<td>(0.084)***</td>
<td>(0.087)***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.261]**</td>
<td>[0.263]**</td>
<td>[0.257]**</td>
<td>[0.084]**</td>
<td>[0.087]**</td>
<td></td>
</tr>
<tr>
<td>VAT</td>
<td>0.317</td>
<td>0.411</td>
<td>0.423</td>
<td>0.192</td>
<td>0.202</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057)***</td>
<td>(0.064)***</td>
<td>(0.066)***</td>
<td>(0.065)***</td>
<td>(0.064)***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.153]**</td>
<td>[0.162]**</td>
<td>[0.165]**</td>
<td>[0.065]**</td>
<td>[0.064]**</td>
<td></td>
</tr>
<tr>
<td>Capital openness</td>
<td>-0.064</td>
<td>-0.263</td>
<td>-0.274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td>(0.631)</td>
<td>(0.634)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.589]</td>
<td>[0.631]</td>
<td>[0.634]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade openness</td>
<td>0.038</td>
<td>0.014</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)***</td>
<td>(0.020)</td>
<td>(0.025)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.016]**</td>
<td>[0.020]</td>
<td>[0.025]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy (polity2)</td>
<td>-0.122</td>
<td>0.085</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.143)</td>
<td>(0.137)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.232]</td>
<td>[0.143]</td>
<td>[0.137]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corruption (CPI)</td>
<td>-0.093</td>
<td>-0.023</td>
<td>-0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014) ***</td>
<td>(0.049)</td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.037]**</td>
<td>[0.049]</td>
<td>[0.049]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country-fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year-fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,344</td>
<td>1,344</td>
<td>1,344</td>
<td>1,344</td>
<td>1,344</td>
<td>1,344</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.069</td>
<td>0.024</td>
<td>0.108</td>
<td>0.173</td>
<td>0.145</td>
<td>0.111</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is import under-reporting index as defined in equation 22 in the text. Robust standard errors are displayed in parentheses and robust standard errors, clustered by reporting country, are listed in brackets. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \).
increase of around US$550 million of tariff revenue in the year 2015.

6 Conclusion

This paper proposes a novel methodology to estimate a country’s degree of trade misreporting. Our methodology is not based on ad-hoc assumptions about who may or may not report accurately; rather, it incorporates the full range of available data to compute the trade reporting patterns of a country with all of its trading partners in a given time period. We use this information to weigh each reported trade entry and eventually we derive seven specific trade misreporting indices, capturing overall trade misreporting, as well as under- and over-reporting of exports and imports. Another unique aspect of the indices developed here is that they are scale independent, making them comparable across countries with different trade values and over different time periods.

After introducing the theoretical derivation, we apply our measurement technique to bilateral annual trade data from 1996-2015, covering over 58 million trade entries at the HS 4-digit level reported by 160 WTO members, accounting for approximately 98 percent of world merchandise trade. To our knowledge, this constitutes the first trade misreporting indices that are comparable across countries and over time, as well as independent of a priori definitions about countries’ reporting accuracies. In a descriptive analysis of the associated country rankings, we find low income countries to misreport relatively more, possibly reflecting their capacity constraints and overall restrictive policy regimes, as well as weak governance and institutional quality. Emerging economies, including primary resource exporting countries, are more likely to over-report exports – an indication for illicit capital flight. We then specifically analyze the prominent case of China’s trade data and our indices suggest the country’s overall trade reporting started to improve substantially when negotiations over joining the WTO began in the late 1990s. Further, China’s relaxation of its restrictive capital control policies coincides with a fall in the country’s export under-reporting.

Finally, to we present an empirical analysis of import under-reporting, using our full (unbalanced) panel data set of 107 countries from 1996-2015. Specifically, economic intuition, as
well as several country-specific studies, suggest that as tariff or VAT rates rise, so should the incentive of importers to under-report, thereby avoiding additional taxation. Indeed, our results provide evidence consistent with that hypothesis on a global level, even after accounting for a list of potentially confounding factors, as well as country- and year-fixed effects.

Beyond these specific results, we hope that our derived indices can be of value for researchers interested in a better understanding of the determinants and consequences of misreported trade data on the global level. For example, the indices may be used to study a range of trade policy analyses, such as estimating the welfare effects of trade facilitation programs (e.g., tariff liberalization or preferential trading arrangements); devising effective export support and capital control programs; or supplementing bilateral and multilateral trade negotiations and foreign policy making, to name a few. Naturally, we do not claim these indices to be perfect. However, we hope they provide a starting point to global studies on trade misreporting.
References

UNCTAD (2016). Trade Mis invoicing in Primary Commodities in Developing Countries: The cases of Chile, Côte d’Ivoire, Nigeria, South Africa and Zambia. Number UNCTAD/SUC/2016/2. United Nations Conference on Trade and Development (UNCTAD).
A Appendix

A.1 Example of mirror import data

Table A1: Mirror trade flow reported by importer Tunisia \((d_1)\) and all source countries: Brazil \((s_1)\), Bangladesh \((s_2)\), and Australia \((s_3)\).

<table>
<thead>
<tr>
<th>HS-4 code</th>
<th>Destination</th>
<th>Source</th>
<th>Import value (($000))</th>
<th>Export value (($000))</th>
<th>Absolute Reporting distance (($000))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((d_1 = s_1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0806</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>0901</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>60</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>4040</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>50</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>5050</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>40</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>6060</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7009</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>Tunisia ((d_1))</td>
<td>Brazil ((s_1))</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>((d_1 = s_2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>40</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>3030</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>60</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>4040</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>80</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>5050</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>100</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>6060</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7070</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>Tunisia ((d_1))</td>
<td>Bangladesh ((s_2))</td>
<td>150</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>((d_1 = s_3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3030</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>150</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>4040</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>120</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>5050</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>110</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>7009</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>8080</td>
<td>Tunisia ((d_1))</td>
<td>Australia ((s_3))</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>((d_1 = s_n, n = 3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>880(810)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,360(1,020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Both imports and exports are considered here in comparable \(FOB\) values to eliminate discrepancies resulted from \(CIF\) and \(FOB\) price reportings by the importer and the exporters, respectively.

A.2 Mis-Reporting or Mis-Classification? Using HS 4-Digit Product Level Trade Data

The Harmonized Commodity Description and Coding System (or simply HS), developed, maintained, and monitored by the World Customs Organization (WCO) was introduced in 1988 and...
has since been adopted by most countries worldwide as a basis for collecting international trade statistics. It currently covers more than 98 percent of merchandise international trade globally and national customs authorities of more than 200 WCO member countries.18 The HS comprises approximately 5,300 product descriptions that appear as headings and subheadings, arranged in 99 chapters, grouped in 21 sections.

The uniform product classification across countries only goes down to HS 6-digit level of disaggregation, while national product classifications often extended up to 8 to 10 digit level (e.g., India and Singapore use 8-digit product classification, while China, UK and USA use 10-digit national product classification.) Thus, internationally available trade data comparable across countries allow us to use at best HS 6-digit disaggregated data for measuring trade misreporting. One might tends to attribute a portion of discrepancies in reported bilateral international trade data to different product classifications used by different countries and the possibility of unintentional misclassification of products by national customs authorities. This demands a brief discussion of HS Nomenclature and Classification of Goods.

Table A2 shows an example of the HS nomenclature. The six digits HS product code can be broken down into three parts. The first two digits (HS 2-digit) identify the chapter the goods are classified in, e.g., 09 corresponds to ‘Coffee, Tea, Maté, and Spices’. The chapter is further divided by adding two digits (HS 4-digit) to identify groupings within that chapter, e.g., 09.01 is associated with ‘Coffee, whether or not roasted or decaffeinated’. Finally, the next two digits (HS 6-digit) are even more specific, e.g., 09.01.11 identifies ‘Coffee, not roasted and not decaffeinated’. Up to the HS 6-digit level, all countries classify products in the same way. Thus, while the probability of unintentional misclassification is not completely ruled out (mix-up between coffee, not roasted and roasted, or not decaffeinated and decaffeinated) at the HS 6-digit level, there should not be any such unintentional misclassification at the HS 4-digit level (since coffee and tea are completely different products). Therefore, to avoid potential issues of ‘unintentional misclassification’ of products by some countries, our analysis focuses on the HS 4-digit product level of disaggregation.

18 As per the WCO website, accessed on 3 November 2017; available under http://www.wcoomd.org/en/topics/nomenclature/overview/what-is-the-harmonized-system.aspx
Table A2: An example of HS product classification by the WCO: First two headings of Chapter 9.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Heading</th>
<th>Sub heading (HS Code)</th>
<th>Product description</th>
</tr>
</thead>
</table>
| 09 | Coffee, tea, maté and spices | 09.01 - Coffee, whether or not roasted or decaffeinated; coffee husks and skins; coffee substitutes containing coffee in any proportion. | - Coffee, not roasted:
0901.11 - Not decaffeinated
0901.12 - Decaffeinated
0901.21 - Coffee roasted:
0901.22 - Not decaffeinated
0901.90 - Other |
| | | 09.02 - Tea, whether or not flavoured. | - Green tea (not fermented) in immediate packings of a content not exceeding 3 kg
0902.10 - Other green tea (not fermented)
0902.30 - Black tea (fermented) and partly fermented tea, in immediate packings of a content not exceeding 3 kg
0902.40 - Other black tea (fermented) and other partly fermented tea |

Further, while the WCO reviews and amends the HS every five years, these revisions mainly targeted the fine-tuning and ensure better coverage of trade statistics at the HS-6 level.\(^\text{19}\) Therefore, by focusing on the HS 4-digit product level we also alleviate concerns about all countries potentially not reporting their trade data using the same version of the HS nomenclature.

A.3 Using different CIF/FOB conversion factor

Since the use of IMF recommended 6 percent CIF/FOB conversion may still leave some doubts, as this estimate is also based on flawed (misreported) data, and one would argue it is useless to impose such an average number since transport and insurance widely varies across product categories, trading partners including its distance from the counterparts and mode of transports. To check the sensitivity of our estimated indices to the use of CIF/FOB conversion factor, we

test our index estimation with the traditional factor of 1.1. However, this exercise does not have any significant effect on our original indices apart from some trivial changes in the index values (see for example Table A3). This is also reflected in the correlation coefficients with our original indices, which are around 0.99 for overall misreporting index as well as other sub-indices.

Table A3: Comparison of overall trade misreporting index (TMRI) estimated using different CIF/FOB conversion factor for top and bottom ten countries in 2015.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>TMRI using CIF/FOB 1.06</th>
<th>TMRI using CIF/FOB 1.1</th>
<th>Rank</th>
<th>Country</th>
<th>TMRI using CIF/FOB 1.06</th>
<th>TMRI using CIF/FOB 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Togo</td>
<td>0.784</td>
<td>0.788</td>
<td>118</td>
<td>Brazil</td>
<td>0.154</td>
<td>0.153</td>
</tr>
<tr>
<td>2</td>
<td>Antigua and Barbuda</td>
<td>0.713</td>
<td>0.717</td>
<td>119</td>
<td>Japan</td>
<td>0.148</td>
<td>0.146</td>
</tr>
<tr>
<td>3</td>
<td>Panama</td>
<td>0.712</td>
<td>0.719</td>
<td>120</td>
<td>Germany</td>
<td>0.144</td>
<td>0.148</td>
</tr>
<tr>
<td>4</td>
<td>Afghanistan</td>
<td>0.636</td>
<td>0.640</td>
<td>121</td>
<td>Italy</td>
<td>0.140</td>
<td>0.144</td>
</tr>
<tr>
<td>5</td>
<td>Malta</td>
<td>0.614</td>
<td>0.620</td>
<td>122</td>
<td>Argentina</td>
<td>0.137</td>
<td>0.137</td>
</tr>
<tr>
<td>6</td>
<td>Benin</td>
<td>0.613</td>
<td>0.620</td>
<td>123</td>
<td>United States</td>
<td>0.133</td>
<td>0.135</td>
</tr>
<tr>
<td>7</td>
<td>Kuwait</td>
<td>0.592</td>
<td>0.591</td>
<td>124</td>
<td>Mexico</td>
<td>0.133</td>
<td>0.135</td>
</tr>
<tr>
<td>8</td>
<td>Sierra Leone</td>
<td>0.561</td>
<td>0.563</td>
<td>125</td>
<td>Chile</td>
<td>0.124</td>
<td>0.124</td>
</tr>
<tr>
<td>9</td>
<td>Solomon Islands</td>
<td>0.494</td>
<td>0.490</td>
<td>126</td>
<td>Peru</td>
<td>0.123</td>
<td>0.124</td>
</tr>
<tr>
<td>10</td>
<td>Niger</td>
<td>0.481</td>
<td>0.481</td>
<td>127</td>
<td>Canada</td>
<td>0.098</td>
<td>0.106</td>
</tr>
</tbody>
</table>

A.4 Correlations with common macroeconomic indicators and correlations between the indices

Table A4 provides simple correlations among the misreporting indices, and Table A5 displays correlation coefficients between all seven misreporting indices and most common macroeconomic indicators including population size, GDP per capita, a democracy score (using the polity2 variable from the Polity IV indicators), corruption levels, capital account openness, and trade openness.
Table A4: Correlation coefficients among different trade misreporting indices.

<table>
<thead>
<tr>
<th>Index:</th>
<th>Overall trade misreporting</th>
<th>Import misreporting</th>
<th>Import under-reporting</th>
<th>Import over-reporting</th>
<th>Export misreporting</th>
<th>Export under-reporting</th>
<th>Export over-reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall trade misreporting</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import misreporting</td>
<td>0.88*** (0.00)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import under-reporting</td>
<td>0.81*** (0.00)</td>
<td>0.92*** (0.00)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import over-reporting</td>
<td>0.60*** (0.00)</td>
<td>0.67*** (0.00)</td>
<td>0.35*** (0.00)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export misreporting</td>
<td>0.80*** (0.00)</td>
<td>0.64*** (0.00)</td>
<td>0.52*** (0.00)</td>
<td>0.47*** (0.00)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export under-reporting</td>
<td>0.84*** (0.00)</td>
<td>0.60*** (0.00)</td>
<td>0.58*** (0.00)</td>
<td>0.38*** (0.00)</td>
<td>0.97*** (0.00)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Export over-reporting</td>
<td>0.57*** (0.00)</td>
<td>0.44*** (0.00)</td>
<td>0.30*** (0.00)</td>
<td>0.50*** (0.00)</td>
<td>0.60*** (0.00)</td>
<td>0.39*** (0.00)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: P-values are displayed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A5: Correlation coefficients between trade misreporting indices and common macroeconomic indicators on the country level.

<table>
<thead>
<tr>
<th>Index:</th>
<th>Overall trade misreporting</th>
<th>Import misreporting</th>
<th>Import under-reporting</th>
<th>Import over-reporting</th>
<th>Export misreporting</th>
<th>Export under-reporting</th>
<th>Export over-reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size (log)</td>
<td>-0.40*** (0.00)</td>
<td>-0.42*** (0.00)</td>
<td>-0.32*** (0.00)</td>
<td>-0.40*** (0.00)</td>
<td>-0.37*** (0.00)</td>
<td>-0.36*** (0.00)</td>
<td>-0.17*** (0.00)</td>
</tr>
<tr>
<td>GDP per capita (log)</td>
<td>-0.39*** (0.00)</td>
<td>-0.44*** (0.00)</td>
<td>-0.31*** (0.00)</td>
<td>-0.51*** (0.00)</td>
<td>-0.27*** (0.00)</td>
<td>-0.20*** (0.00)</td>
<td>-0.37*** (0.00)</td>
</tr>
<tr>
<td>Democracy (polity2)</td>
<td>-0.39*** (0.00)</td>
<td>-0.31*** (0.00)</td>
<td>-0.18*** (0.00)</td>
<td>-0.42*** (0.00)</td>
<td>-0.39*** (0.00)</td>
<td>-0.37*** (0.00)</td>
<td>-0.28*** (0.00)</td>
</tr>
<tr>
<td>Corruption (CPI)</td>
<td>-0.32*** (0.00)</td>
<td>-0.35*** (0.00)</td>
<td>-0.24*** (0.00)</td>
<td>-0.39*** (0.00)</td>
<td>-0.22*** (0.00)</td>
<td>-0.20*** (0.00)</td>
<td>-0.20*** (0.00)</td>
</tr>
<tr>
<td>Capital account openness</td>
<td>-0.26*** (0.00)</td>
<td>-0.28*** (0.00)</td>
<td>-0.19*** (0.00)</td>
<td>-0.33*** (0.00)</td>
<td>-0.20*** (0.00)</td>
<td>-0.17*** (0.00)</td>
<td>-0.16*** (0.00)</td>
</tr>
<tr>
<td>Trade openness</td>
<td>-0.10*** (0.00)</td>
<td>-0.10*** (0.00)</td>
<td>-0.11*** (0.95)</td>
<td>-0.00*** (0.00)</td>
<td>0.15*** (0.00)</td>
<td>0.13*** (0.00)</td>
<td>0.09*** (0.00)</td>
</tr>
</tbody>
</table>

Note: P-values are displayed in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
A.5 Summary Statistics of all Trade Misreporting Indices for all countries and data employed in Econometric Application

Table A6: Summary statistics: All trade misreporting indices for all countries.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall trade misreporting index</td>
<td>2,472</td>
<td>0.30</td>
<td>0.14</td>
<td>0.08</td>
<td>0.96</td>
</tr>
<tr>
<td>Export misreporting index</td>
<td>2,461</td>
<td>0.31</td>
<td>0.19</td>
<td>0.06</td>
<td>1.00</td>
</tr>
<tr>
<td>Export under-reporting index</td>
<td>2,461</td>
<td>0.23</td>
<td>0.21</td>
<td>0.03</td>
<td>1.00</td>
</tr>
<tr>
<td>Export over-reporting index</td>
<td>2,461</td>
<td>0.14</td>
<td>0.09</td>
<td>0.01</td>
<td>0.50</td>
</tr>
<tr>
<td>Import misreporting index</td>
<td>2,464</td>
<td>0.28</td>
<td>0.13</td>
<td>0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>Import under-reporting index</td>
<td>2,464</td>
<td>0.18</td>
<td>0.13</td>
<td>0.03</td>
<td>0.89</td>
</tr>
<tr>
<td>Import over-reporting index</td>
<td>2,464</td>
<td>0.16</td>
<td>0.07</td>
<td>0.04</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table A7: Summary statistics of data used in our application.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import under-reporting index [0 to100]</td>
<td>1,344</td>
<td>14.90</td>
<td>10.79</td>
<td>3.32</td>
<td>84.10</td>
</tr>
<tr>
<td>Tariff rate (applied, trade weighted mean, all products) (%)</td>
<td>1,344</td>
<td>4.64</td>
<td>4.33</td>
<td>0.00</td>
<td>28.55</td>
</tr>
<tr>
<td>Value added tax (VAT) rate (%)</td>
<td>1,344</td>
<td>10.65</td>
<td>5.30</td>
<td>0.05</td>
<td>67.74</td>
</tr>
<tr>
<td>Capital account openness [-1.90 to 2.37]</td>
<td>1,344</td>
<td>1.04</td>
<td>1.49</td>
<td>-1.90</td>
<td>2.37</td>
</tr>
<tr>
<td>Trade openness (trade % of GDP)</td>
<td>1,344</td>
<td>86.59</td>
<td>49.99</td>
<td>16.44</td>
<td>441.60</td>
</tr>
<tr>
<td>Democracy (polity2) [-10 to +10]</td>
<td>1,344</td>
<td>6.92</td>
<td>4.58</td>
<td>-9.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Corruption (CPI) [0-100]</td>
<td>1,344</td>
<td>50.03</td>
<td>22.52</td>
<td>12.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Note: This table is based on the sample used in the regression presented in Table 6.